Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles.
نویسندگان
چکیده
Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies.
منابع مشابه
Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors
Objective(s): Human Wharton’s Jelly mesenchymal stem cells (hWMSCs) are undifferentiated cells commonly used in regenerative medicine. The aim of this study was to develop a reliable tool for tracking hWMSCs when utilized as therapeutics in burnt disorders and also to optimize the cell-based treatment procedure. Materials and Methods: The hWMSCs were first isolated from fresh umbilical cord Wha...
متن کاملRNA secondary structure and qRT-PCR analyses pertained to expressed anti-CD25 CAR in NK-92 cell line
Background and Objectives: Tumor-infiltrating regulatory T (TI-Treg) cells perform the significant function in cancer immune escape. In this study, the third generation CAR construct was designed against human CD25 antigen, the significant cell surface biomarker of TI-Tregs. Methods: Initially, the construct of anti-CD25 CAR was designed. Using RNAfold web server, the RNA secondary structure wa...
متن کاملGene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کاملLentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro
Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2009